Decision Tree Algorithm


decision tree algorithm modèles
Cliquez sur l'image pour zoomer / Cliquez sur le bouton ci-dessous pour voir plus d'images

Enregistrer, Remplir les champs vides, Imprimer, Terminer!
How to create a Decision Tree Algorithm? Download this Decision Tree Algorithm template now!


Formats de fichiers gratuits disponibles:

.pdf


  • Ce document a été certifié par un professionnel
  • 100% personnalisable


  
Évaluation du modèle: 7

Aucun Malware/Virus trouvé, scanné par: Norton safe website


Business Entreprise data Les données Tree Arbre Decision Tree Arbre de décision Simple Decision Tree Arbre de décision simple Decision Décision Attribute Attribut

How to draft a Decision Tree Algorithm? An easy way to start completing your document is to download this Decision Tree Algorithm template now!

Every day brings new projects, emails, documents, and task lists, and often it is not that different from the work you have done before. Many of our day-to-day tasks are similar to something we have done before. Don't reinvent the wheel every time you start to work on something new!

Instead, we provide this standardized Decision Tree Algorithm template with text and formatting as a starting point to help professionalize the way you are working. Our private, business and legal document templates are regularly screened by professionals. If time or quality is of the essence, this ready-made template can help you to save time and to focus on the topics that really matter!

Using this document template guarantees you will save time, cost and efforts! It comes in Microsoft Office format, is ready to be tailored to your personal needs. Completing your document has never been easier!

Download this Decision Tree Algorithm template now for your own benefit!

database 17 • Class P: buyscomputer = “yes” • Class N: buyscomputer buys computer = “no” no 9 9 5 5 Entropy ( D ) = − log2 ( ) − log2 ( ) =0.940 14 14 14 14 • Compute the expected information requirement for each attribute: start with the attribute age Gain( age, D ) = Entropy ( D ) − Sv Entropy ( Sv ) ∑ v∈ Youth , Middle − aged , Senior S = Entropy ( D ) − 5 4 5 Entropy ( Syouth ) − Entropy ( Smiddle aged ) − Entropy ( Ssenior ) 14 14 14 = 0.246 Gain (income, D ) = 0.029 Gain ( student , D ) = 0.151 Gain ( credit rating , D ) = 0.048 18 Figure 6.5 The attribute age has the highest information gain and therefore becomes the splitting attribute at the root node of the decision tree..


AVERTISSEMENT
Rien sur ce site ne doit être considéré comme un avis juridique et aucune relation avocat-client n'est établie.


Si vous avez des questions ou des commentaires, n'hésitez pas à les poster ci-dessous.


default user img

Modèles associés


Derniers modèles


Derniers sujets


Voir plus